Co to jest zmodyfikowany czas trwania
Zmodyfikowany czas trwania jest formułą, która wyraża mierzalną zmianę wartości papieru wartościowego w odpowiedzi na zmianę stóp procentowych. Zmodyfikowany czas trwania jest zgodny z koncepcją, że stopy procentowe i ceny obligacji poruszają się w przeciwnych kierunkach. Ta formuła służy do określenia wpływu zmiany stóp procentowych o 100 punktów bazowych (1 procent) na cenę obligacji. Obliczany jako:
W pobliżu Zmodyfikowany czas trwania = 1 + nYTM Macauley Duration gdzie: Macauley Duration = średnioważony terminowy termin zapadalności przepływów pieniężnych z obligacji YTM = dochód do terminu zapadalności n = liczba okresów kuponowych w ciągu roku
ŁAMANIE W DÓŁ Zmodyfikowany czas trwania
Zmodyfikowany czas trwania mierzy średni ważony gotówką okres do terminu wymagalności obligacji. Jest to bardzo ważna liczba dla zarządzających portfelem, doradców finansowych i klientów, którzy powinni wziąć pod uwagę przy wyborze inwestycji, ponieważ, przy wszystkich innych czynnikach ryzyka równych, obligacje o wyższym czasie trwania mają większą zmienność cen niż obligacje o niższym czasie. Istnieje wiele rodzajów czasu trwania, a wszystkie składniki obligacji, takie jak cena, kupon, data wykupu i stopy procentowe, są używane do obliczania czasu trwania.
Zmodyfikowane obliczanie czasu trwania
Zmodyfikowany czas trwania jest przedłużeniem czegoś zwanego czasem trwania Makaulay, który pozwala inwestorom mierzyć wrażliwość obligacji na zmiany stóp procentowych. Aby obliczyć zmodyfikowany czas trwania, należy najpierw obliczyć czas trwania Macaulay. Wzór na czas trwania Macaulay to:
W pobliżu Macauley Duration = cena rynkowa obligacji∑t = 1n (PV × CF) × T gdzie: PV × CF = bieżąca wartość kuponu w okresie tT = czas do każdego przepływu pieniężnego w latach n = liczba okresów kuponowych w ciągu roku W pobliżu
Tutaj (PV) (CF) jest wartością bieżącą kuponu w okresie t, a T jest równy czasowi każdego przepływu pieniężnego w latach. Obliczenia te są wykonywane i sumowane dla liczby okresów do terminu zapadalności. Załóżmy na przykład, że obligacja ma trzyletni termin zapadalności, płaci kupon 10%, a stopy procentowe wynoszą 5 procent. Obligacja ta, według podstawowej formuły wyceny obligacji, miałaby cenę rynkową:
W pobliżu Cena rynkowa = 1, 05 100 USD + 1, 052 100 USD + 1, 053 1100 USD Cena rynkowa = 95, 24 USD + 90, 70 USD + 950, 22 USD Cena rynkowa = 1 136, 16 USD
Następnie, korzystając ze wzoru czasu trwania Macaulay, czas trwania jest obliczany jako:
W pobliżu Czas trwania Macauley = Czas trwania Macauley = Czas trwania Macauley = Czas trwania Macauley = (95, 24 USD × 1 136, 161 USD) + (90, 70 USD × 1 136, 162 USD) + (950, 22 × 1 136, 163 USD) 2, 753
Ten wynik pokazuje, że odzyskanie prawdziwych kosztów obligacji zajmuje 2, 753 lata. Przy pomocy tej liczby można teraz obliczyć zmodyfikowany czas trwania.
Aby znaleźć zmodyfikowany czas trwania, inwestor musi jedynie wziąć czas Macaulay i podzielić go przez 1 + (rentowność do terminu zapadalności / liczba okresów kuponowych w ciągu roku). W tym przykładzie obliczeniem byłoby:
W pobliżu Zmodyfikowany czas trwania = 11, 05 2, 753 = 2, 621
To pokazuje, że za każdy 1 procent zmiany stóp procentowych obligacja w tym przykładzie odwrotnie zmieniłaby cenę o 2, 621 procent.
Zasady czasu trwania
Oto kilka zasad dotyczących czasu trwania, o których należy pamiętać. Po pierwsze, wraz ze wzrostem dojrzałości, czas trwania rośnie, a więź staje się bardziej niestabilna. Po drugie, wraz ze wzrostem kuponu obligacji, jego czas trwania maleje, a wiązanie staje się mniej zmienne. Po trzecie, wraz ze wzrostem stóp procentowych, czas trwania maleje, a wrażliwość obligacji na dalsze podwyżki stóp procentowych maleje.